1)

a) The proportion of student's that Kronk does better than is equivalent to the area to the left of his score in a Gaussian distribution. If we convert his score to a standard normal form, Kronk's Z-score is $\frac{23-20.8}{4.8}=.458$. If we look this up in the Z-Table, we see that he did better than roughly 67% of all other students.
b) The proportion of student's that performed better than Yzma is the proportion of student's to the right of Yzma's score in a Gaussian distribution. If we convert her score to a standard normal, we see a value of $\frac{1700-1500}{250}=.4$. This corresponds to her score being greater than . 655% of students, and thus worse than .345 percent of students.
c) Here we want to do the process in reverse; we want to find the z-score associated with scoring higher than 90% of the students, and see what that corresponds to in the context of a SAT. If we find the table entry for .90 , we see its z-score is about 1.28 . So we need to find:
$1.28=\frac{x-1500}{250}$, and x equals: 1820.
2)
a) We use the cumulative distribution to find: $\frac{40-30}{40-25}=\frac{10}{15}=\frac{2}{3}$
b) If Simba shows up after 11:40, he has a 0 percent chance of arriving before Pubmaa. As we saw before, if he were to show up at 11:30, he would have a 30% chance of arriving before Pumbaa. We need to calculate the probability he arrives before Pumbaa for every time interval in the region of 11:30 to 11:40, and integrate over that:

$$
\int_{30}^{40} \frac{1}{15} *\left(\frac{40-x}{40-25}\right)=.222222
$$

3)

a) To be a valid pdf, $c(100-x)$ needs to integrate to 1 :

$$
\begin{gathered}
\int_{0}^{100} c(100-x)=1 \\
c\left(100 x-\frac{x^{2}}{2}\right) \left\lvert\, \begin{array}{c}
100 \\
0
\end{array}=1\right. \\
c\left(\left(100 * 100-\frac{100^{2}}{2}\right)-\left(100 * 0-\frac{0^{2}}{2}\right)\right)=1 \\
c(10000-5000)=1 \\
c=1 / 5000 \\
\text { b) } \left.\int_{0}^{x} \frac{1}{5000}(100-x)=\frac{1}{5000}\left(100 x-\frac{x^{2}}{2}\right) \right\rvert\, \begin{array}{l}
x \\
0
\end{array}=\frac{1}{5000}\left(100 x-\frac{x^{2}}{2}\right)
\end{gathered}
$$

c) If we plug in 50 to the above, we see a value of .75 .
d) Although the probability that $x=50$ is 0 , we can find the probability that x falls within a small range around 50 and 75 in order to get the ratio:

$$
\frac{P(50+\epsilon>x>50+\epsilon)}{P(75+\epsilon>x>75+\epsilon)}=\frac{\epsilon P(x=50)}{\epsilon P(x=75)}=\frac{P(x=50)}{P(x=75)}=\frac{100-50}{100-75}=2
$$

Twice as likely.
4)
a) Probability of getting at least 450 calories from mangos:

We need at least 3 mangos. We take 1-P(0 mangos) -P (1 mango)- P (2 mangos)
$=1-\frac{4^{0} e^{-4}}{0!}-\frac{4^{1} e^{-4}}{1!}=.76$
b) Probability of getting at least 450 calories from oranges:

We need at least 9 oranges
$=1-\sum_{i=0}^{8} \frac{15^{i} e^{-15}}{i!}=.96$
b)

We set this up with bayes formula:
$P($ oranges $\mid 600$ calories $)=\frac{P(600 \text { calories } \operatorname{loranges}) P(\text { oranges })}{P(600 \text { calories } \mid \text { oranges }) P(\text { oranges })+P(600 \text { calories } \mid \text { mangos }) P(\text { mangos })}$
$=\frac{\frac{15^{12} e^{-15}}{12!} * 6}{\frac{15^{12} e^{-15}}{12!} * .6+\frac{4^{3} e^{-4}}{3!} * .4}=.3888$
5)
a)

The probability of them stopping on a roll is $1 / 6$. We sum up the probabilities of them rolling the dice less than or equal to 4 times before stopping on the next roll.

$$
\sum_{i=0}^{4} \frac{5^{i}}{6} \frac{1}{6}
$$

b) The expectation of a geometric random variable is $1 / p$, so when $p=1 / 6$, the expectation is 6 .
6)

We model this as a binomial with the sum representing the number of questions we get right. We have a 25% chance of getting a question correct.

$$
\sum_{i=7}^{10}\binom{10}{i}(.75)^{10-i}(.25)^{i}
$$

